10.1 Introduction

◆ Design issue
 - Area efficiency \rightarrow cost per bit
 - Access time \rightarrow speed
 - Power consumption \rightarrow low-power
10.1 Introduction

Semiconductor memory types

- **Semiconductor Memories**
 - **Volatile**
 - Dynamic RAM (DRAM)
 - Static RAM (SRAM)
 - **Non-volatile**
 - Mask (Fuse) ROM
 - Programmable ROM (PROM)
 - Erasable PROM (EPROM)
 - Electrically Erasable PROM (EEPROM)
 - Flash Memory
 - Ferroelectric RAM (FRAM)
 - Magnetoresistive RAM (MRAM)
 - Resistive RAM (RRAM)
 - Phase-change RAM (PCRAM)
 - Spin Torque Transfer RAM (STT)
Characteristic Summary of Memory Devices

<table>
<thead>
<tr>
<th>Memory type</th>
<th>DRAM</th>
<th>SRAM</th>
<th>UV EPROM</th>
<th>EEPROM</th>
<th>Flash</th>
<th>FRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data volatility</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Data refresh operation</td>
<td>Required</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cell structure</td>
<td>1T-1C</td>
<td>6T</td>
<td>1T</td>
<td>2T</td>
<td>1T</td>
<td>1T-1C</td>
</tr>
<tr>
<td>Cell size (F^2) (F: min. feature size)</td>
<td>6~8</td>
<td>80~100</td>
<td></td>
<td></td>
<td>4~5(NAND)</td>
<td>9~10(NOR)</td>
</tr>
<tr>
<td>Cell density</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Power consumption</td>
<td>High</td>
<td>High/low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Read speed (latency)</td>
<td>~50 ns</td>
<td>~10/70 ns</td>
<td>~50 ns</td>
<td>~50 ns</td>
<td>~50 ns</td>
<td>~100 ns</td>
</tr>
<tr>
<td>Write speed</td>
<td>~40 ns</td>
<td>~5/40 ns</td>
<td>~10 μs</td>
<td>~5 ms</td>
<td>~(10 μs-1 ms)</td>
<td>~100 ns</td>
</tr>
<tr>
<td>Endurance</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Cost</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>In-system writability</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power supply</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Application example</td>
<td>Main memory</td>
<td>Cache/PDAs</td>
<td>Game machines</td>
<td>ID card</td>
<td>Memory card</td>
<td>solid-state disk</td>
</tr>
</tbody>
</table>

Equivalent Circuits of Memory Cells (1)

(a) DRAM

(b) SRAM
Equivalent Circuits of Memory Cells(2)

(c) Mask ROM (d) EPROM (e) FRAM
Conceptual RAM Array Organization

M columns
N rows
1 Kb memory = 1024b = 2^10
M = 5 6 4
N = 5 4 6
10.2 Dynamic Random Access Memory

Typical configuration of DRAM chip
(1.6Gbps 4Gb 30nm LPDDR3 w/ 8 banks)

chip size \leftrightarrow performance

The number of cells per word and bit lines

Pin assignment
Definition and Function of DRAM Pins

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Definition</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>Clock input</td>
<td>Reference system clock for the operation and data communication</td>
</tr>
<tr>
<td>CKE</td>
<td>Clock Enable</td>
<td>Control the clock input</td>
</tr>
<tr>
<td>CS</td>
<td>Chip Select</td>
<td>Activate the DRAM device from a memory cluster</td>
</tr>
<tr>
<td>RAS</td>
<td>Row Address Strobe</td>
<td>Latch row address and start the cell core operation</td>
</tr>
<tr>
<td>CAS</td>
<td>Column Address Strobe</td>
<td>Latch column address and start the data communication operation</td>
</tr>
<tr>
<td>WE</td>
<td>Write Enable</td>
<td>Activate the write operation</td>
</tr>
<tr>
<td>A0 to A14</td>
<td>Address input</td>
<td>Select a data bit</td>
</tr>
<tr>
<td>DQ0 to DQ15</td>
<td>Data input and output</td>
<td>Communicate data with external devices</td>
</tr>
<tr>
<td>DQMU/DQML</td>
<td>DQ Mask for Upper (Lower) Byte</td>
<td>Mask byte data from the operations</td>
</tr>
<tr>
<td>V_{DD}/V_{SS}</td>
<td>Power pins</td>
<td>Power for DRAM core and peripheral circuits</td>
</tr>
<tr>
<td>V_{DDQ}/V_{SSQ}</td>
<td>Power pins</td>
<td>Power for DQ circuits</td>
</tr>
<tr>
<td>NC</td>
<td>No connection</td>
<td></td>
</tr>
</tbody>
</table>
Historical Evolution of DRAM Cell(1)

- **Four-transistor DRAM cell**
 - Operations are similar to SRAM cell
 - Two storage nodes
 - Periodically refresh is required
 - Non-destructive read operation

- **Three-transistor DRAM cell**
 - One storage node
 - One Tr. each for "read" and "write"
 - Non-destructive read operation
 - Two bit lines and two word lines
 - (additional contacts → increase area)
Historical Evolution of DRAM Cell(2)

- **Two-transistor DRAM cell**
 - Explicit storage cap.
 - Destructive read operation (share with the bit line)
 - Two bit lines and one word line

- **One-transistor DRAM cell**
 - Industry-standard DRAM cell
 - Destructive read operation (share with the bit line)
 - Charge restoring operation required
DRAM Cell Types

- With only one transistor and one capacitor
 - Smallest area of the all DRAM cells.
 - Destructive “read” operation
 - major effort: large cap. cell with minimized area

(a) DRAM cell with a stacked cap.
(b) DRAM cell with a trench cap.
Operation of Three-Transistor DRAM Cell

- Typical 3-T DRAM cell and voltage waveforms
Precharge Events

Base on two-phase non-overlapping clock scheme

\(\Phi_1 \): precharge phase
\(\Phi_2 \): active phase

Precharge signal PC goes up
MP1 and MP2 are activated
\(C_2 \) and \(C_3 \) are charged up
(Steady-state values)
Write “1” and Read “1” Operations

- **Write “1”**
 - DATA is low → D_{in} remains high
 - M1 turns on (WS is high) → C_2 shared with C_1
 - C_1 charge up to high (M2 is conducting)

- **Read “1”**
 - RS is high → M3 turns on
 - M2 and M3 create conducting path from C_3 to GND
 - C_3 discharges
 - Non-destructive read operation

\[
\frac{1}{2} V_{DD} = 0.5
\]

\[
0.5 \times 100 C_1 + 0.990 C_1 = 0.490 C_1
\]

\[
\frac{100 C_1}{101 C_1} = \frac{100}{101} \Rightarrow V = 5 \text{ mV}
\]
Write “0” and Read “0” Operations

- **Write “0”**
 - DATA is high \(\rightarrow\) \(D_{in}\) goes low
 - M1 turns on (WS is high)
 - \(C_1\) discharges
 - (M2 turns off)

- **Read “0”**
 - RS is high \(\rightarrow\) M3 turns on
 - No conducting path
 - \(C_3\) does not discharge
Operation of One-Transistor DRAM Cell

- One explicit storage cap. and one access transistor
 - The most widely used storage structure
 - Bit lines are folded and precharged to half-V_{DD}
 - Improve noise-immunity & reduce power consumption
 - Operation: “read”, “write”, “refresh”
1-T DRAM Structure

- DRAM cell array with control circuits
- Latch amplifier to sense the small signal difference
- Bit lines and sensing nodes set to half-V_{DD} through equalizer
DRAM Read Operation

- C_S shared with C_{BL} (=initially half V_{DD})
 \[\Delta V = \frac{C_S}{C_{BL} + C_S} \frac{V_{DD}}{2} \]

- $C_S : V_{DD} \rightarrow \frac{1}{2}V_{DD} + \Delta V$ (destructive)
- BL and BLB voltage difference amplified
- BLB \rightarrow GND, BL \rightarrow V_{DD}
 storage node is recovered (restoring)
- Column switch is enabled by column decoder (BL \rightarrow BL_IO, BLB \rightarrow BL_IOB)
- Read Amp. amplifies the voltage difference
 - $V_{PP} = V_{DD} + V_{th}$ for full charge restoration
 - PSA and PSAB are sequentially activated to reduce charge injection and short circuit current

DRAM Write Operation

- Identical sequence to normal read operation
- Strong write driver (buffer) to drive BL_IO, BL_IOB line cap. faster than read operation
- Column switch is selected by column decoder
- Bit line and cell data changed
Asynchronous DRAM Mode(1)

- single bit access (different row and column addresses)
- Operation uses address multiplexing scheme (\overline{RAS} and \overline{CAS})
 - reduce the chip package size
- \overline{RAS} pull down \rightarrow operation start
- Falling edge of \overline{CAS} \rightarrow data (from same word line) selected
- \overline{RAS}, \overline{CAS} precharge before new data access
- t_{RAC}: memory read latency, time to read data from falling of \overline{RAS}
- Length of word line is determined by refresh cycle constraint
Asynchronous DRAM Mode (2)

- **page access**
 - keep the row address
 - read cell of same row address
 - faster read operation

- **extended data-out (EDO)**
 - new column address is captured at rising edge of CAS
 - Read data maintain during precharge time
 - Fastest read operation
Synchronous DRAM Mode

- **Four bit burst read**
 - Read frequency improve with use of the system clock
 - At falling edge, control signal and addresses become active
 - Pipelined based on clock to improve throughput
 - Use both of edges to improve bandwidth (Dual Data Rate)

- **Serial mode read**
 - Use small signal swing and clock recovery scheme to maximize the frequency
 - Send control input as packet
 - Send out data in a serial form
Leakage Currents in DRAM Cells

- Contact and bit line share by two adjacent cells

\[I_{\text{leakage}} = I_{\text{sub}} + I_{\text{tunneling}} + I_j + I_{\text{cell-to-cell}} \]

- \(I_{\text{sub}} \): leakage through cell transistor
- \(I_{\text{tunneling}} \): tunneling through thin dielectric
- \(I_j \): junction leakage at storage node
- \(I_{\text{cell-to-cell}} \): leakage across the field oxide

- \(I_{\text{sub}} \) depend on \(V_{\text{th}} \)
- Increase \(V_{SB} \) to reduce \(I_{\text{sub}} \)

- \(I_{\text{tunneling}} \) is a serious issue because thickness of dielectric is reduced to increase cell cap.
Refresh Operation

- **ROR (RAS-only refresh) refresh**
 - Read and restore operation
 - Does not send data out
 - similar to normal read operation

- **CBR (CAS-before-RAS) refresh**
 - row address generated by on-chip counter
 - performed periodically

- **Self refresh**
 - period set according to operating condition
 - row address and control signal generated by internal circuit
Logic level of system board and memory chip are different required to convert logic levels input/output buffers

Input buffers

-inverter type
-latch type
-differential amp type
Characteristic Comparison of Input Buffers

<table>
<thead>
<tr>
<th></th>
<th>Buffer type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inverter</td>
</tr>
<tr>
<td>Logic threshold determination (V_{IH} and V_{IL})</td>
<td>By W_P/W_N ratio</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow</td>
</tr>
<tr>
<td>Standby current</td>
<td>Small</td>
</tr>
<tr>
<td>Sensitivity to V_{DD} and temperature</td>
<td>Large</td>
</tr>
<tr>
<td>Noise immunity</td>
<td>Bad</td>
</tr>
<tr>
<td>Constraint</td>
<td>None</td>
</tr>
</tbody>
</table>
DRAM Input/Output Circuits(2)

- Memory output buffers
 - Need to drive large cap.
 - Keep a high-impedance when chip is not selected
 ➡️ to prevent interference of output

PMOS pull-up structure

NMOS pull-up structure
To select cell from 2^{2M} memory array, M address bits are needed.

Practically, M transistors in series is impossible.

Decoding scheme is composed of pre and main decoder.
DRAM Decoder (2)

- V_{PP} for full restoration
- Output of predecoder boosted by level shifter
- Self-bootstrapped driver for transferring to highly cap. without signal degradation

- Voltage of C when main decoder is selected

$$V_C = V_{PP} + \Delta V = V_{DD} - V_{TN} + \frac{C_{MN2}}{C_{MN2} + C_{Parasitic}} V_{PP}$$
Voltage Sense Amplifiers

- To detect signal difference on data lines
 - Current-mirror differential
 - Popular and good common-mode rejection ratio
 - Large area and large power consumption
 - Full CMOS latch type
 - High speed, small area and low power
 - Precharge signal required
 - Operation cannot be reversed
 - Semilatch type
 - Between current-mirror type and full CMOS latch type
Internal Voltage Regulator Circuit

- Lowering voltage to reduce power consumption
- V_{INT} (internal voltage generator)
 - reduce operating current
Half V_{DD} Voltage Generator

- Folded bit line structure with half V_{DD} sensing scheme
 - Improve noise immunity and low power consumption
 - Reduce electric field across thin dielectric

![Bias circuit and driver circuit](image)

Simulated output waveforms
Negative Substrate Bias Voltage Generator

- Subthreshold current is major source of charge decay
 - Negative voltage substrate \rightarrow increase threshold voltage
 - \rightarrow reduce load cap. of bit line

\[\frac{\Delta V_T}{\Delta V_{SB}} \propto \sqrt{V_{SB}} \]
Negative Substrate Bias Voltage Generator(2)

Circuit diagram

Timing diagram

Simulated waveforms
10.3 Static Random Access Memory (1)

- Stored data can be retained indefinitely
- Simple latch with two stable operating points
- Two access switches to connect 1-bit SRAM
- Poly resistor load inverter structure is more compact cell size (resistor stack on top of cell)
- Load R trade off: low power ↔ wider noise margin, high speed

Symbols:
- Symbolic representation
- Generic topology of SRAM
- Resistive-load SRAM
10.3 Static Random Access Memory (2)

- **Depletion-load NMOS SRAM**
 - Six-transistor
 (one poly and one metal layer)
 - Cell size relatively small
 - Static characteristics and noise margins better than resistive-load cell
 - Static power consumption

- **Full CMOS SRAM**
 - Most popular
 - Lowest static power
 - Superior noise margins and switching speed
Full CMOS SRAM Cell(1)

- Very small static power dissipation (limited by leakage current)
- High noise immunity (large noise margin)
- Ability to operate at lower supply
- Disadvantage: cell area slightly larger, latch-up phenomena
Full CMOS SRAM Cell(2)

Layout of CMOS SRAM cell

Layout of a 4-bit X 4bit SRAM array, consisting of 16 CMOS SRAM cells
Two basic requirements which dictate W/L ratio

- Non-destructive data read operation
- Modify stored data during write phase

Read Operation (0 stored)

- M3 and M1 conduct some current
- V_{C_C} drops slightly and V_1 increases
- $V_{1,max} \leq V_{T,2}$ not to turn on M2
- M3 in Saturation and M1 in linear

\[
\frac{k_{n,3}}{2} (V_{DD} - V_1 - V_{T,n})^2 = \frac{k_{n,1}}{2} (2(V_{DD} - V_{T,n})V_1 - V_1^2)
\]

\[
k_{n,3} < \left(\frac{W}{L}\right)_3 < \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} - 2V_{T,n})^2}
\]
Write 0 operation (initially, 1 was stored at node 1)

- V_1 must be reduced below $V_{T,2}$ → M2 turns off, V2 rises and V1 falls
- When $V_1 = V_{T,n}$, M3 in linear & M5 in saturation

$$\frac{k_{p,5}}{k_{n,3}} < \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} + V_{T,p})^2}$$

$$\frac{W}{L} < \frac{\mu_n}{\mu_p} \cdot \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} + V_{T,p})^2}$$
Memory Structure of SRAM

- Word line selected by row address
- Cell data kept during read operation
- Boosted voltage not required
- Address multiplexing scheme is not used (fast access time than DRAM)
- Depend on applications
 - ultra low power: load transistor turns off during read operation
 - high speed: remains on
Operation of SRAM

- **Read operation**
 - Word line enable
 - One bit line discharge
 (voltage change of bit line is very small)
 - Sense amp. detect the voltage difference on bit line
 - Multi-stage amp. is used to improve read speed

- **Write operation**
 - Word line selected by row address
 - Write buffer write data into cell
 - Write buffer has larger current driving capability than cell
 - Write is faster than read
SRAM Read Operation

- TTL level converts into CMOS level signal
- Internal voltage regulator to reduce power dissipation to improve reliability
Leakage Currents in SRAM Cells

- Major portion of standby current
- Standby power is key parameter for low power design
- High threshold

Reduction of leakage ↔ degradation of performance

\[I_j : \text{junction current} \]
\[\text{data "1" to substrate} \]
\[I_{\text{nsub}} \text{ and } I_{\text{psub}} : \text{subthreshold leakage} \]
\[\text{turn off NMOS and PMOS} \]
\[I_{\text{tunneling}} : \text{tunneling current} \]
\[\text{cross thin gate oxide} \]
SRAM Read/Write Circuits

- Current-mode sense amp widely used in SRAM
 - improve signal sensing speed independent of bit line cap.
- Signal line connect to source of latch transistor
- Current difference appears on DL and DL
- Open-loop gain
 \[\text{Gain}_{\text{open-loop}} = \frac{g_m(m3) \times g_m(m4)}{g_m(m1) \times g_m(m2)} \]
- Current-mode sense amp: Drawback- larger power consumption
SRAM Cell at Low Supply Voltage

◆ SRAM cell susceptible to variabilities
 ▪ Due to minimum device size to minimize area
 ▪ Threshold voltage variation covered in Ch. 3 plus layout induced threshold voltage variation
 ▪ PMOS pair (M5, M6) in SRAM cell- different V_T due to NBTI
 ▪ NMOS pair (M1, M2) in SRAM cell- different V_T due to PBTI

◆ Static noise margin (SNM)
 ▪ A noise tolerant voltage before the stored data flip
 ▪ Equivalent ckt to measure SNM
 ▪ 6-T SRAM cell at low supply voltage degrades SNM

V_n: DC noise, SNM: min. DC noise which flips the state of SRAM cell during read operation
SNM Variation due to DC Noise

- How to measure SNM graphically

- SNM: The length of side of the smaller nested square in the two openings of butterfly curve
- Before two V_n s are fed: SNM=V_S
- After V_n s are fed: stable point A and unstable point B meets at D
- More V_n s are applied: one common point C & the stored bits are flipped
SRAM Cell Writability

★ Write-trip point
 - A metric for writability
 - Max. bit line voltage to flip the state of the SRAM cell
 - Primarily determined by the pull-up ratio of SRAM cell
 (Ex: \(\frac{W}{L}_{5}/\frac{W}{L}_{3} \))

★ Variability tolerant 6T SRAM cell
 - Trade off bw. read stability and writability
 - \(M_3 \) & \(M_4 \) \(\uparrow \): SNM \(\uparrow \), writability \(\downarrow \)
8T SRAM Cell

- No secondary power supplies
- Decouples the SRAM cell nodes from the bit line which enables balancing the read & write modes
- Read operation doesn’t affect the stored data
- 6T cell has the worst SNM in read operation where the pass gate transistor increases the voltage at the ‘0’ stored
10.4 Nonvolatile Memory

- Simple combinational Boolean network
- Only one word line selected at a time
- Active transistors exist at cross point
- Dynamic ROM
 - use periodic precharge signal to reduce static power
Layout of NOR ROM Array(1)

- Initially, NMOS at every row-column intersection
- ‘1’-bits are realized by omitting drain or source connection or gate electrode of corresponding NMOS

Layout example of a NOR ROM array
In reality, metal column lines laid out directly on top of diffusion column to reduce horizontal dimension.

Layout of the 4-bit X 4-bit NOR ROM array (pp. 46)
Implant-mask Programmable NOR ROM

- Every two rows share a common ground connection
- Every metal to diffusion contact shared by two adjacent devices
4-bit x 4-bit NOR ROM Array

- Based on implant-mask programming
- Raised threshold voltage $> V_{OH}$ → "1"-bit
- Non-implanted → "0"-bit
- Higher core density (smaller silicon area per stored bit)
4-bit x 4-bit NAND ROM Array

- Bit line: depletion-load NAND gate
- Deactivated transistor \Rightarrow "1"-bit
- Shorted or on transistor \Rightarrow "0"-bit
Implant-mask layout of NAND ROM

- Lowered threshold voltage \(< 0\text{V}\) → “0”-bit
- Much more compact than NOR ROM
- Access time is slower than NOR ROM
Design of Row and Column Decoders (1)

- Select a particular memory location in array
- Row address decoder example

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Design of Row and Column Decoders (2)

- ROM array and row decoder (two adjacent NOR arrays)
Row Decoder for NAND ROM

- Lower voltage for logic "0"
- Realized using same layout strategy as memory array
Column Decoder(1)

- Using NOR address decoder and NMOS pass transistor
- Only one pass transistor turned on at a time
- $2^M(M+1)$ transistors required
Column Decoder(2)

- Binary selection tree decoder
- NOR address decoder not needed
 - Reduce the number of transistors significantly
- But, long data access time
Example 10.1(1)

- Analyze the access time of a 32-kbit NOR ROM array

\[\mu_n C_{ox} = 20 \mu A / V^2 \]

\[C_{ox} = 3.47 \mu F / cm^2 \]

Poly sheet resistance = 20Ω/square
Example 10.1(2)

- Assume 7 row address bits and 8 column address bits (128 rows and 256 columns)
- Calculate row resistance and capacitance

![Diagram of row circuit]

\[C_{\text{row}} = C_{\text{ox}} \cdot W \cdot L = 10.4 \, fF / \text{bit} \]
\[R_{\text{row}} = (\# \, \text{of} \, \text{squares}) \times (\text{Poly sheet resistance}) = 60 \, \Omega / \text{bit} \]

- Calculate row access time

\[t_{\text{row}} \approx 0.38 \cdot R_{T} \cdot C_{T} = 15.53 \, \text{ns} \]

\[R_{T} = \sum_{\text{all columns}} R_{i} = 15.36 \, k\Omega \]
\[C_{T} = \sum_{\text{all columns}} C_{i} = 2.66 \, pF \]
Example 10.1(3)

- A more accurate delay: Elmore time constant for RC ladder circuits

\[t_{\text{row}} = \sum_{k=1}^{256} R_{jk} C_k = 20.52 \text{ns} \quad \text{where} \quad R_{jk} = \sum_{j=1}^{k} R_j \]

- Calculate column access time

\[C_{\text{column}} = 128 \times (C_{\text{gd,driver}} + C_{\text{db,driver}}) \approx 1.5 \text{pF} \]

where \(C_{\text{gd,driver}} + C_{\text{db,driver}} = 0.0118 \text{pF} / \text{word line} \)
Example 10.1(4)

- To calculate column access time, consider the worst-case signal propagation delay τ_{PHL} for below inverter

\[t_{column} = 18\text{ns} \quad \text{(using eq. 6.18: } t_{PHL}) \]

\[t_{access} = t_{row} + t_{column} = 38.5\text{ns} \]
10.5 Flash Memory

- One transistor with floating gate
- Memory cell can have two states (two threshold)
- Electron accumulated at the floating gate \rightarrow higher threshold \rightarrow "1" state
- Electron removed from the floating gate \rightarrow lower threshold \rightarrow "0" state

Hot electron injection mechanism
(Data programming)

Fowler-Nordheim tunneling mechanism
(Data erasing)
Equivalent Capacitive-Coupling Circuit

- V_{FG} by capacitive coupling after V_{CG} & V_D applied

 \[
 V_{FG} = \frac{Q_{FG}}{C_{total}} + \frac{C_{FC}}{C_{total}} V_{CG} + \frac{C_{FD}}{C_{total}} V_D
 \]

 \[
 C_{total} = C_{FC} + C_{FS} + C_{FB} + C_{FD}
 \]

- min. V_{CG} to turn on the control gate transistor

 \[
 V_T(CG) = \frac{C_{total}}{C_{FC}} V_T(FG) - \frac{Q_{FG}}{C_{FC}} - \frac{C_{FD}}{C_{FC}} V_D
 \]

 \[
 \Delta V_T(CG) = -\frac{\Delta Q_{FG}}{C_{FC}}
 \]

Q_{FC} : charge stored at floating gate
C_{total} : total cap.
C_{FC} : cap. between floating and control gate
C_{FS}, C_{FB} and C_{FD} : cap. between floating gate and source, bulk and drain
V_{CG} and V_D : voltage at control gate and drain
$V_T(FG)$: threshold voltage to turn on the floating gate transistor
I-V Characteristic of Flash Memory

- Low and high threshold voltages for control gate voltage

Diagram showing the I-V characteristic of a Flash Memory with control gate voltage on the x-axis and transistor current on the y-axis. The diagram illustrates the difference in current for a low threshold cell (Data "0") and a high threshold cell (Data "1").
NOR Flash Memory Cell

- Bias conditions and configuration of NOR Cells
- F-N tunneling mechanism for erase operation
- Hot-electron injection mechanism for programming operation
Bias Conditions of NOR Cell

<table>
<thead>
<tr>
<th>Signal</th>
<th>Operation</th>
<th>Erase</th>
<th>Programming</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit line 1</td>
<td>Open</td>
<td>6V</td>
<td>1V</td>
<td></td>
</tr>
<tr>
<td>Bit line 2</td>
<td>Open</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Source line</td>
<td>12V</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Word line 1</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Word line 2</td>
<td>0V</td>
<td>12V</td>
<td>5V</td>
<td></td>
</tr>
<tr>
<td>Word line 3</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
<td></td>
</tr>
</tbody>
</table>
NAND Flash Memory Cell

- Cross-section view and configuration of NAND cells

- F-N tunneling mechanism for erase
- F-N tunneling mechanism for program
- Slower programming and read speed but smaller area than NOR cell structure
Bias Conditions of NAND Cell

<table>
<thead>
<tr>
<th>Signal</th>
<th>Erase</th>
<th>Programming</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit line 1</td>
<td>Open</td>
<td>0V</td>
<td>1V</td>
</tr>
<tr>
<td>Bit line 2</td>
<td>Open</td>
<td>0V</td>
<td>1V</td>
</tr>
<tr>
<td>Select line 1</td>
<td>Open</td>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 1</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 2</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 3</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 4</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 5</td>
<td>0V</td>
<td>20V</td>
<td>0V</td>
</tr>
<tr>
<td>Word line 6</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 7</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Word line 8</td>
<td>0V</td>
<td>10V</td>
<td>5V</td>
</tr>
<tr>
<td>Select line 2</td>
<td>Open</td>
<td>0V</td>
<td>5V</td>
</tr>
<tr>
<td>Source line</td>
<td>Open</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>p-well 2</td>
<td>20V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>n-sub</td>
<td>20V</td>
<td>0V</td>
<td>0V</td>
</tr>
</tbody>
</table>
Comparison between NOR and NAND

<table>
<thead>
<tr>
<th></th>
<th>NOR</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erase method</td>
<td>F-N tunneling</td>
<td>F-N tunneling</td>
</tr>
<tr>
<td>Programming method</td>
<td>Hot electron injection</td>
<td>F-N tunneling</td>
</tr>
<tr>
<td>Erase speed</td>
<td>Slow</td>
<td>Fast</td>
</tr>
<tr>
<td>Program speed</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Read speed</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Cell size</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Scalability</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Application</td>
<td>Embedded system</td>
<td>Mass storage</td>
</tr>
</tbody>
</table>
Multilevel Cell Concept

- Effective memory density can be improved
- Possible state number limited by
 - Available charge range
 - Accuracy of programming and read operations
 - Disturbance of state over time

Threshold voltage distribution of 2bits/cell storage
Flash Memory Circuit

- On-chip charge pump used to generate programming voltage
- Chain of diode and cap. to charge or discharge each half cycle

\[V_{out} = V_{in} + (\gamma V_{DD} - V_T(MN1)) + \cdots + (\gamma V_{DD} - V_T(MN_n)) \]
10.6 Ferroelectric Random Access Memory

- Hysteresis characteristic of a ferroelectric cap.

- Total charge varies as function of applied voltage
Structure and Operation of FRAM

◆ Similar to DRAM except plate line

- Step-sensing scheme

\[
\Delta V_1 = \frac{C_1}{C_1 + C_{BL}} V_{DD}
\]

\[
\Delta V_0 = \frac{C_0}{C_0 + C_{BL}} V_{DD}
\]

C_1 and C_0 : linearly modeled ferroelectric cap
Problems of FRAM

◆ Step-sensing scheme cause reliability issues
 ▪ Pulse sensing scheme also used with read speed penalty

◆ Fatigue
 ▪ Capacitance charge gradually degraded with repeated use

◆ Imprint
 ▪ Ferroelectric cap tends to stay at one state preferably when state maintained for a long time