The McGraw·Hill Companies

CMOS Digital Integrated Circuits

Chapter 10 Semiconductor Memories

S.M. Kang, Y. Leblebici, and C. Kim

Copyright © 2014 McGraw-Hill Education. Permission required for reproduction or display.

10.1 Introduction

Design issue

- Area efficiency -> cost per bit
- Access time -> speed
- Power consumption -> low-power

Characteristic Summary of Memory Devices						
	Memory type					
	DRAM	SRAM	UV EPROM	EEPROM	Flash	FRAM
Data volatility	Yes	Yes	No	No	No	No
Data refresh operation	Required	No	No	No	No	No
Cell structure	1T-1C	6Т	1T	2T	1T	1T-1C
Cell size(F ²) (F: min. feature size)	6~8	80~100			4~5(NAND) 9~10(NOR)	
Cell density	High	Low	High	Low	High	High
Power consumption	High	High/low	Low	Low	Low	High
Read speed (latency)	~50 ns	~10/70 ns	~50 ns	~50 ns	~50 ns	~100 ns
Write speed	~40 ns	~5/40 ns	~10 µs	~5 ms	~(10 µs-1 ms)	~100 ns
Endurance	High	High	High	Low	High	High
Cost	Low	High	Low	High	Low	Low
In-system writability	Yes	Yes	No	Yes	Yes	Yes
Power supply	Single	Single	Single	Multiple	Single	Single
Application example	Main memory	Cache/PDAs	Game machines	ID card	Memory card solid-state disk	Smart card, digital camera

Characteristic Summary of Memory Devices

© CMOS Digital Integrated Circuits – 4th Edition

Equivalent Circuits of Memory Cells(1)

Equivalent Circuits of Memory Cells(2)

Conceptual RAM Array Organization

© CMOS Digital Integrated Circuits – 4th Edition

10.2 Dynamic Random Access Memory

DQ PAD					
CELLARRAY ROWDEC ROWDEC CELLARRAY CELLARRAY CELLARRAY CELLARRAY					
ROWDEC					
Typical configuration of DRAM chip					
(1.6Gbps 4Gb 30nm LPDDR3 w/ 8 banks)					
chip size 🔶 performance					
The number of cells per word and bit lines					

	1		\bigcirc		
VDD		1 ●	54	IJ	VSS
DQO		2	53		DQ15
VDDQ		3	52		VSSQ
DQ1		4	51	П	DQ14
DQ2		5	50		DQ13
VSSQ	T	6	49	П	VDDQ
DQ3		7	48		DQ12
DQ4		8	47		DQ11
VDDQ		9	46		VSSQ
DQ5		10	45		DQ10
DQ6		11	44		DQ9
VSSQ		12	43	П	VDDQ
DQ7		13	42		DQ8
VDD		14	41		VSS
DQML		15	40		NC
WE#		16	39	П	DQMH
CAS#		17	38	П	CLK
RAS#		18	37		CKE
CS#		19	36	П	A12
BAO		20	35		A11
BA1		21	34		A9
A10	CL	22	33	Т	8A
AO		23	32		A7
Al		24	31		A6
A2		25	30		A5
A3		26	29		A4
VDD		27	28		VSS

Pin assignment

Definition and Function of DRAM Pins

Pin name	Definition	Function
CLK	Clock input	Reference system clock for the operation and data communication
CKE	Clock Enable	Control the clock input
\overline{CS}	Chip Select	Activate the DRAM device from a memory cluster
RAS	Row Address Strobe	Latch row address and start the cell core operation
CAS	Column Address Strobe	Latch column address and start the data communication operation
WE	Write Enable	Activate the write operation
A0 to A14	Address input	Select a data bit
DQ0 to DQ15	Data input and output	Communicate data with external devices
DQMU/DQML	DQ Mask for Upper (Lower) Byte	Mask byte data from the operations
V_{DD}/V_{SS}	Power pins	Power for DRAM core and peripheral circuits
$V_{DD}Q/V_{SS}Q$	Power pins	Power for DQ circuits
NC	No connection	

Historical Evolution of DRAM Cell(1)

Historical Evolution of DRAM Cell(2)

- Two-transistor DRAM cell
- Explicit storage cap.
- Destructive read operation (share with the bit line)
- Two bit lines and one word line
- One-transistor DRAM cell
- Industry-standard DRAM cell
- Destructive read operation (share with the bit line)
- Charge restoring operation required

DRAM Cell Types

With only one transistor and one capacitor

- Smallest area of the all DRAM cells.
- Destructive "read" operation
 - → major effort : large cap. cell with minimized area

(a) DRAM cell with a stacked cap.

(b) DRAM cell with a trench cap.

Operation of Three-Transistor DRAM Cell

Typical 3-T DRAM cell and voltage waveforms

© CMOS Digital Integrated Circuits – 4th Edition

Precharge Events

Write "1" and Read "1" Operations

Write "0" and Read "0" Operations

♦ Write "0"

• DATA is high \rightarrow D_{in} goes low

- M1 turns on (WS is high)
- C₁ discharges (M2 turns off)

- Read "0"
- RS is high → M3 turns on
- No conducting path
- C₃ does not discharge

Operation of One-Transistor DRAM Cell

One explicit storage cap. and one access transistor

- The most widely used storage structure
- Bit lines are folded and precharged to half-V_{DD}
 - → improve noise-immunity & reduce power consumption
- Operation : "read", "write", "refresh"

1-T DRAM Structure

© CMOS Digital Integrated Circuits – 4th Edition

18

DRAM Read Operation

PISOi Vpp Vpp C_{S} shared with C_{BI} (=initially half V_{DD}) PISOi/PISO PISO VPP Word Line charge sharing between the cell and bit line capac cell data restoring Βl Voc BL/BLB 1/2Vpp BLB activation of V_{DD} hit line sense amplifier PSA VDD PSAB VDD Column Select BL IO BL_IO/BL_IOB BL_IOB Dout IO Vdd Dout_IO/ Dout_IOB Word line 3 Voltage (V) **DRA234** DOUT BL IO 0_20 40 60 80

Time (nS)

VDD

PEQ/PSAEQ

 $\Delta V = \frac{C_s}{C_{p_l} + C_s} \frac{V_{DD}}{2}$ \diamond C_s : V_{DD} \rightarrow $\frac{1}{2}$ V_{DD} + Δ V (destructive) BL and BLB voltage difference amplified $BLB \rightarrow GND, BL \rightarrow V_{DD}$ storage node is recovered (restoring) Column switch is enabled by column

- decoder (BL -> BL_IO, BLB -> BL_IOB)
- Read Amp. amplifies the voltage difference
 - $V_{PP} = V_{DD} + V_{th}$ for full charge restoration
 - PSA and PSAB are sequentially activated to reduce charge injection and short circuit current

© CMOS Digital Integrated Circuits – 4th Edition

DRAM Write Operation

Asynchronous DRAM Mode(1)

- single bit access (different row and column addresses)
- Operation uses address multiplexing scheme (RAS and CAS)
 - reduce the chip package size
- ♦ RAS pull down → operation start
- RAS, CAS precharge before new data access
- \diamond t_{RAC} : memory read latency, time to read data from falling of \overline{RAS}
- Length of word line is determined by refresh cycle constraint

Asynchronous DRAM Mode(2)

page access

- keep the row address
- read cell of same row address
- faster read operation

- extened data-out(EDO)
 - new column address is captured at rising edge of CAS
 - Read data maintain during precharge time
 - Fastest read opertaion

Synchronous DRAM Mode

Four bit burst read

- Read frequency improve with use of the system clock
- At falling edge, control signal and addresses become active
- Pipelined based on clock to improve throughput
- Use both of edges to improve bandwidth (Dual Data Rate)
- Serial mode read
 - Use small signal swing and clock recovery scheme to maximize the frequency
 - Send control input as packet
 - Send out data in a serial form

Leakage Currents in DRAM Cells

Refresh Operation

ROR(RAS-only refresh) refresh

- Read and restore operation
- Does not send data out
- similar to normal read operation
- CBR(CAS-before-RAS) refresh
 - row address generated by onchip counter
 - performed periodically
- Self refresh
 - period set according to operating condition
 - row address and control signal generated by internal circuit

DRAM Input/Output Circuits(1)

Logic level of system board and memory chip are different
 required to convert logic levels
 input/output buffers

Characteristic Comparison of Input Buffers

	Buffer type		
	Inverter	Latch	Differential
Logic threshold determination $(V_{IH} and V_{IL})$	By W _P /W _N ratio	By V _{ref}	By V_{ref}
Speed	Slow	Fastest	Fast
Standby current	Small	Smallest	Large
Sensitivity to V _{DD} and temperature	Large	Small	Small
Noise immunity	Bad	Good	Good
Constraint	None	Precharge and activation signals needed	None

DRAM Input/Output Circuits(2)

Memory output buffers

- Need to drive large cap.
- Keep a high-impedance when chip is not selected
 - → to prevent interference of output

DRAM Decoder(1)

To select cell from 2^{2M} memory array, M address bits are needed
 Practically, M transistors in series is impossible

decoding scheme is composed of pre and main decoder

© CMOS Digital Integrated Circuits – 4th Edition

DRAM Decoder(2)

Voltage Sense Amplifiers

To detect signal difference on data lines

OUT

OUT

- Current-mirror differential
 - Popular and good common-mode rejection ratio
 - Large area and large power consumption

Full CMOS latch type

- High speed, small area and low power
- Precharge signal required
- operation cannot be reversed
- Semilatch type
 - Between current-mirror type and full CMOS latch type

OUT -C

ĪN

PSAF

IN

PSAE

Internal Voltage Regulator Circuit

Lowering voltage to reduce power consumption
 V_{INT}(internal voltage generator)
 reduce operating current

Half V_{DD} Voltage Generator

Folded bit line structure with half V_{DD} sensing scheme

- Improve noise immunity and low power consumption
- Reduce electric field across thin dielectric

Negative Substrate Bias Voltage Generator(1)

Subthreshold current is major source of charge decay

Negative voltage substrate -> increase threshold voltage

➡ reduce load cap. of bit line

Negative Substrate Bias Voltage Generator(2)

10.3 Static Random Access Memory(1)

- Stored data can be retained indefinitely
- Simple latch with two stable operating points
- Two access switches to connect 1-bit SRAM
- Poly resistor load inverter structure is more compact cell size (resistor stack on top of cell)
- ◆ Load R trade off : low power ← wider noise margin, high speed

10.3 Static Random Access Memory(2)

Depletion-load NMOS SRAM

Six-transistor

(one poly and one metal layer)

- Cell size relatively small
- Static characteristics and noise margins better than resistive-load cell
- Static power consumption

Full CMOS SRAM

- Most popular
- Lowest static power
- Superior noise margins and switching speed

Full CMOS SRAM Cell(1)

- Very small static power dissipation (limited by leakage current)
- High noise immunity (large noise margin)
- Ability to operate at lower supply
- Disadvantage : cell area slightly larger, latch-up phenomena

Full CMOS SRAM Cell(2)

Layout of CMOS SRAM cell

Layout of a 4-bit X 4bit SRAM array, consisting of 16 CMOS SRAM cells

CMOS SRAM Cell Design Strategy(1)

Two basic requirements which dictate W/L ratio

- Non-destructive data read operation
- Modify stored data during write phase

© CMOS Digital Integrated Circuits – 4th Edition

CMOS SRAM Cell Design Strategy(2)

Memory Structure of SRAM

- Word line selected by row address
- Cell data kept during read operation
- Boosted voltage not required
- Address multiplexing scheme is not used (fast access time than DRAM)
 - Depend on applications
 - ultra low power : load transistor turns off during read operation
 - high speed : remains on

Operation of SRAM

Read operation

- Word line enable
- One bit line discharge (voltage change of bit line is very small)
- Sense amp. detect the voltage difference on bit line
- Multi-stage amp. is used to improve read speed
- Write operation
 - Word line selected by row address
 - Write buffer write data into cell
 - Write buffer has larger current driving capability than cell
 - Write is faster than read

SRAM Read Operation

TTL level converts into CMOS level signal
 Internal voltage regulator to reduce power dissipation

© CMOS Digital Integrated Circuits – 4th Edition

Leakage Currents in SRAM Cells

SRAM Read/Write Circuits

- Current-mode sense amp widely used in SRAM
 - improve signal sensing speed independent of bit line cap.
- Signal line connect to source of latch transistor
- Current difference appears on DL and DL
- Open-loop gain $Gain_{open-loop} = \frac{g_m(m3) \times g_m(m4)}{g_m(m1) \times g_m(m2)}$
- Current-mode sense amp: Drawback- larger power consumption

SRAM Cell at Low Supply Voltage

SRAM cell susceptible to variabilities

- Due to minimum device size to a minimize area
- Threshold voltage variation covered in Ch. 3 plus layout induced threshold voltage variation
- PMOS pair (M5, M6) in SRAM cell- different V_T due to NBTI
- NMOS pair (M1, M2) in SRAM cell- different V_T due to PBTI
- Static noise margin (SNM)
 - A noise tolerant voltage before the stored data flip
 - Equivalent ckt to measure SNM
 - 6-T SRAM cell at low supply voltage degrades SNM

V_n: DC noise, SNM: min. DC noise which flips the state of SRAM cell during read operation

SNM Variation due to DC Noise

How to measure SNM graphically

- SNM: The length of side of the smaller nested square in the two openings of butterfly curve
- Before two V_ns are fed: SNM=V_s
- After V_ns are fed: stable point A and unstable point B meets at D
- More V_ns are applied: one common point C & the stored bits are flipped

SRAM Cell Writability

🔷 Write-trip point

- A metric for writability
- Max. bit line voltage to flip the state of the SRAM cell
- Primarily determined by the pull-up ratio of SRAM cell (Ex: (W/L)₅/(W/L)₃)
- Variability tolerant 6T
 SRAM cell
 - Trade off bw. read stability and writability
 - $M_3 \& M_4 \uparrow$: SNM ↑, writability ↓

8T SRAM Cell

- No secondary power supplies
- Decouples the SRAM cell nodes from the bit line which enables balancing the read & write modes
- Read operation doesn't affect the stored data
- 6T cell has the worst SNM in read operation where the pass gate transistor increases the voltage at the '0' stored

10.4 Nonvolatile Memory

- Simple combinational Boolean network
- Only one word line selected at a time
- Active transistors exist at cross point
- Dynamic ROM
 - use periodic precharge signal to reduce static power

Layout of NOR ROM Array(1)

 Initially, NMOS at every row-column intersection
 '1'-bits are realized by omitting drain or source connection or gate electrode of corresponding NMOS

Layout of NOR ROM Array(2)

 In reality, metal column lines laid out directly on top of diffusion column to reduce horizontal dimension

Implant-mask Programmable NOR ROM

Every two rows share a common ground connection
 Every metal to diffusion contact shared by two adjacent devices

4-bit x 4-bit NOR ROM Array

Based on implant-mask programming

◆ Raised threshold voltage >V_{OH} → "1"-bit

◆ Non-implanted → "0"-bit

higher core density (smaller silicon area per stored bit)

© CMOS Digital Integrated Circuits – 4th Edition

4-bit x 4-bit NAND ROM Array

Bit line : depletion-load NAND gate

Deactivated transistor → "1"-bit

Shorted or on transistor -> "0"-bit

Implant-mask layout of NAND ROM

Lowered threshold voltage < 0V → "0"-bit
 Much more compact than NOR ROM

Access time is slower than NOR ROM

Design of Row and Column Decoders(1)

Select a particular memory location in array
Row address decoder example

Design of Row and Column Decoders(2)

ROM array and row decoder (two adjacent NOR arrays)

Row Decoder for NAND ROM

Lower voltage for logic "0"

Realized using same layout strategy as memory array

Column Decoder(1)

Using NOR address decoder and NMOS pass transistor
 Only one pass transistor turned on at a time
 2^M(M+1) transistors required

Column Decoder(2)

Binary selection tree decoder

NOR address decoder not needed

Reduce the number of transistors significantly

But, long data access time

Example 10.1(1)

Analyze the access time of a 32-kbit NOR ROM array

Example 10.1(2)

Assume 7 row address bits and 8 column address bits (128 rows and 256 columns)

© CMOS Digital Integrated Circuits – 4th Edition

Example 10.1(3)

 A more accurate delay: Elmore time constant for RC ladder circuits

$$t_{row} = \sum_{k=1}^{256} R_{jk} C_k = 20.52 ns$$
 where $R_{jk} = \sum_{j=1}^{k} R_j$

Calculate column access time

Example 10.1(4)

• To calculate column access time, consider the worst-case signal propagation delay τ_{PHL} for below inverter

10.5 Flash Memory

- One transistor with floating gate
- Memory cell can have two states (two threshold)
- \diamond Electron accumulated at the floating gate \rightarrow higher threshold \rightarrow "1" state
- Electron removed from the floating gate \rightarrow lower threshold \rightarrow "0" state

Equivalent Capacitive-Coupling Circuit

 Q_{FC} : charge stored at floating gate

C_{total} : total cap.

 C_{FC} : cap. between floating and control gate

 C_{FS^\prime} C_{FB} and C_{FD} : cap. between floating gate and source, bulk and drain

 V_{CG} and V_{D} : voltage at control gate and drain

 $V_{\rm T}({\rm FG})$: threshold voltage to turn on the floating gate transistor

 V_{FG} by capacitive coupling after V_{CG} & V_D applied

$$V_{FG} = \frac{Q_{FG}}{C_{total}} + \frac{C_{FC}}{C_{total}} V_{CG} + \frac{C_{FD}}{C_{total}} V_{D}$$
$$C_{total} = C_{FC} + C_{FS} + C_{FB} + C_{FD}$$

min. V_{CG} to turn on the control gate transistor

$$V_T(CG) = \frac{C_{total}}{C_{FC}} V_T(FG) - \frac{Q_{FG}}{C_{FC}} - \frac{C_{FD}}{C_{FC}} V_D$$
$$\Delta V_T(CG) = -\frac{\Delta Q_{FG}}{C_{FC}}$$

I-V Characteristic of Flash Memory

Low and high threshold voltages for control gate voltage

NOR Flash Memory Cell

Bias conditions and configuration of NOR Cells

F-N tunneling mechanism for erase operation

Hot-electron injection mechanism for programming operation

Bias Conditions of NOR Cell

	Operation		
Signal	Erase	Programming	Read
Bit line 1	Open	6V	1V
Bit line 2	Open	0V	0V
Source line	12V	0V	0V
Word line 1	0V	0V	0V
Word line 2	0V	12V	5V
Word line 3	0V	0V	0V

NAND Flash Memory Cell

Cross-section view and configuration of NAND cells

 F-N tunneling mechanism for erase
 F-N tunneling mechanism for program
 Slower programming and read speed but smaller area than NOR cell structure

Bias Conditions of NAND Cell

		Operation		
Signal	Erase	Programming	Read	
Bit line 1	Open	0V	1V	
Bit line 2	Open	0V	1V	
Select line 1	Open	5V	5V	
Word line 1	0V	10V	5V	
Word line 2	0V	10V	5V	
Word line 3	0V	10V	5V	
Word line 4	0V	10V	5V	
Word line 5	0V	20V	0V	
Word line 6	0V	10V	5V	
Word line 7	0V	10V	5V	
Word line 8	0V	10V	5V	
Select line 2	Open	0V	5V	
Source line	Open	0V	0V	
p-well 2	20V	0V	0V	
n-sub	20V	0V	0V	

Comparison between NOR and NAND

	NOR	NAND
Erase method	F-N tunneling	F-N tunneling
Programming method	Hot electron injection	F-N tunneling
Erase speed	Slow	Fast
Program speed	Fast	Slow
Read speed	Fast	Slow
Cell size	Large	Small
Scalability	Difficult	Easy
Application	Embedded system	Mass storage

Multilevel Cell Concept

Effective memory density can be improved

Possible state number limited by

- Available charge range
- Accuracy of programming and read operations
- Disturbance of state over time

Threshold voltage distribution of 2bits/cell storage

Flash Memory Circuit

On-chip charge pump used to generate programming voltage
Chain of diode and cap. to charge or discharge each half cycle

10.6 Ferroelectric Random Access Memory

Structure and Operation of FRAM

Problems of FRAM

Step-sensing scheme cause reliability issues

- Pulse sensing scheme also used with read speed penalty
- ♦ Fatigue
 - Capacitance charge gradually degraded with repeated use

Imprint

 Ferroelectric cap tends to stay at one state preferably when state maintained for a long time