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Outline
• Derivation of Domino

– Motivation for domino circuits
– Tradeoffs compared to static circuits

• Textbook vs Industry Domino
– Use of static logic gates
– Keepers
– Footless gates and delayed clocks
– Domino timing constraints
– Set Dominant Latches (SDLs)

• Summary
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Motivation for Domino - SPEED
• Performance of CMOS gates

– Delay varies directly with output load
– Delay varies inversely with device size
– Sizing up: Current stage gets faster, previous stage gets 

slower

• Higher gain gates have a speed advantage
– Gain = Cout/Cin for a particular delay or drive strength
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Basic precharge/discharge structures

Fully CMOS logic gates:
Two logic blocks (N & P).
Both up and down transitions could be critical.
The input capacitance is that of both an N and a P 
device.
The Pfets generally wider than NFETS (a.k.a. Beta 
ratio). Especially problematic when high stacks are 
present (then the area/speed/Cin penalty is big). 

So, let’s get rid of the p-logic block !
☺ A single logic block remains.
☺ A single transition should be optimized for the logic 

function evaluation!
☺ The input capacitance is only that of the N device!

n-logic

p-logic

in f

n-logicin

fφ
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Anatomy of a Domino Gate

In 2 2

Clk 1

2

In 1 1

3

3

Static CMOS NOR

Out

Out

Domino NOR

• Features of a simple domino gate

• Single clocked P-FET

• Clocked “foot” N-FET device

• Only presents N device load to 
its inputs

• N network is identical to static 
gate except for foot

• For the same pull-down strength, 
the domino gate gives approximately 
2x the gain (in this case)

•Trip point of the gate is now just Vtn 
instead of based on P/N ratio
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Static CMOS Path vs Domino Path

Domino performs the same logic as static CMOS with significantly less 
delay.
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Domino timing

Domino Precharge

Clk

EvaluatePrecharge
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Domino timing

Domino Precharge
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Domino timing

Domino Precharge
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Domino timing

Domino Precharge
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Domino timing

Domino Evaluate
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Domino timing

Domino Evaluate
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Domino timing

Domino Evaluate
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Domino timing

Domino Evaluate
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Domino timing

Domino Evaluate
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Domino Timing Notes
• During evaluate domino is sensitive to “up glitches”

– No recovery from incorrect discharge
– “Hard” setup requirement for falling input edges

• Hopefully, the falling edge is not critical

– “Soft” setup requirement for rising input edges
• Rising edges may be late provided they still trip the gate

• Domino chains must follow strict domino-static structure
– Every even stage must be static.
– Can’t have an odd number of stages to a domino input.

• Why not?



The University of Texas at AustinEE 382M Class Notes Page # 17

The Problem of Inverting Logic

A

B

B

Sa Sb

Sb

Sa
Sa*(AB) + Sb*(AB)#

Static CMOS Path

A

B

Sa Sb

Broken Domino PathClk

Domino logic can not 
implement an odd 

number of inversions.

Sa*(AB) + Sb

(AB)#

AB

AB

(AB)#
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Dual Rail Domino

A

B

Sa Sb

Clk

With complementary logic to 
produce needed inverted signals, 

domino can implement any 
function.

Sa*(AB) + Sb*(AB)#

A# B#

(AB)#

AB
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Tradeoffs of Domino

19

• Increased Area
– Dual rail domino can double the number of gates

• Increased Power
– Precharging increases activity factors
– Increased clock load

• Increased Noise Sensitivity
– High gain means low noise immunity
– Charge sharing in complex gates

• Increased Design Time
– Added timing checks
– CAD tools less automated
Domino typically only used in the most timing critical paths.

• Faster Gates
– Allows more logic per cycle with less delay
– Allows for more complex gates (no dual P network)
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Textbook vs Industry Domino
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Textbook Domino Cycle

In two phase domino design half of logic precharges while other half evaluates.

In

OutB

Clk

Clk#

OutA
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Addition #1: Static Gates Used for Logic 
(a.k.a. Compound Domino)

Any inverting static gate may be used between domino gates.

In

OutB

Clk

Clk#

OutA
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Addition #2: Add Half Latches
(domino no longer dynamic)

P-keepers hold domino nodes high during stop clock and improve noise margins.

In

OutB

Clk

Clk#

OutA
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Sizing Keepers

24

Clk Wp

Wn Wn Wn Wn Wn Wn

Wkpr

NumN*Wn/20 < Wkpr

Min keeper size set by 
noise requirements

Wkpr < Wn/2
Max keeper size set by  

delay degradationNumN = 6

NumN*Wn/20 < Wkpr < Wn/2

NumN < 10

Maximum noise sensitivity and delay limit number of parallel stacks.
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Addition #3: Add Footless Domino Gates
(a.k.a. unfooted delayed reset)

Footless domino gates improve speed and allow more logic per gate.

In

OutB

Clk

Clk#

OutA
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Power Races

Negative Evaluate Gap:
• More Power

• Evaluate Delay Push Out

Negative Precharge Gap:
• More Power

• Precharge Delay Push Out

Data

Clk
Out

In footless domino gates Clk must be high when Data is high.

Data

Clk

Evaluate Gap Precharge Gap
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Domino max timing constraints with static latches

.

In

Clk Clk#

Static &
D1/D2 gates

D1 Static latch

Latch setup + 
clock skew/jitter

Evaluate
forward
delay
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Addition #4: Remove Static Latches

Removal of latches allows transparency from one phase to the next.

In

OutB

Clk

Clk#

OutA
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Addition #5: Add Set Dominant Latches (SDLs)

SDLs convert domino signals into more static-like behavior

In

OutB

Clk

Clk#

OutA
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SDL Timing

Overlap of Clk# and OutA is now frequency dependent.

With SDLs precharge transition is delayed until start of next evaluate.

Tskew

Clk

Clk#

OutA
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Textbook vs Industry Domino

In

Clk

In

Clk

OutA

OutA
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Domino Circuit Summary

32

• Domino reduces delay by favoring one transition and 
making the other non-critical by construction

• The price of this speed is generally:
– Greater Noise Sensitivity
– More Power
– More Design Time

• Industry domino circuits make use of:
– Different static logic gates
– Keepers
– Footless domino gates
– Transparency
– SDLs
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Noise: Leakage and Charge Sharing

CLK

C

B

A

CLK
n1

In the evaluate phase, if A=1, AND B=1 
AND C=0, charge is redistributed from n1 
to the two parasitic capacitors.

The purpose of the p-keeper is to supply 
current and maintain the voltage on n1 so 
that the inverter does not flip erroneously. 
Domino is unforgiving unlike static CMOS 
that permits spurious transitions.

CLK    or CLK

Minimize charge transfer by
precharging internal nodes
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Noise Optimization – layout considerations

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Keep these wires short (Gate cap ok, wire BAD)

Minimize internal node cap – single leg/no contacts where possible

Only short wires here

Don’t let this wire get too long

Due to the dynamic (undriven 
or weakly driven) nodes,
domino is sensitive to noise
coupled to inputs and internal
nodes – requires more careful
layout design.
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Internal pre-charge scheme - I

An internal precharge can mitigate the 
charge-sharing problem.  This also slows 
down the circuit a bit because now the 
additional charge has to flow to ground 
when A=B=C=1. 

F = ABC

CLK

C

B

A

CLK

CLK    or CLK
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CLK

C

F= ABC

B

A

CLK

B C

Internal pre-charge scheme - II

Relieve clock loading with alternate precharge 
schemes for internal nodes.
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Internal pre-charge scheme - III

Split the tree into two parts.  
This slows the charge-
sharing by making the 
transistors smaller.  

This scheme also evens out 
the delay between all three 
inputs.

F= ABC

CLK

CLK

C

B

A

CLK

A

B

C

CLK
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Noise-II: victim & aggressor

CLK

CLK

CLK
=0



The University of Texas at AustinEE 382M Class Notes Page # 39

D1 & D2 (footed & footless)

CMOSD1

CLK

C

B

A

CLK

E

D

CLK

D2 CMOS

F
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Single Rail Domino: 2-input XOR

CLK

F

B

A

CLK

A

B
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Dual rail domino:2-input XOR

CLK

B

A

CLK

A

B

A

F F

Make use of intermediate nodes to form dual rail domino.

Be careful of “sneak paths”.
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Dual Rail Domino: 3-input AND

F = ABCCLK

CLK

C

B

A

F = ABCCLK

A B C

Can’t always make use of intermediate nodes.

In dual rail, one rail can be faster than the other.
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Complex function: AND-OR

F= ABC + DEF

CLK

CLK

C

B

A

F

E

D

Complex gates can be formed just by adding N-
channel transistors.  
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C

B

A

CLK

A

B

A

B

C

F F

Complex function: 3-input XOR

In complex gates, make use of intermediate nodes.  Again, be 
careful of “sneak paths”.
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cin

p0

g1

g0
c1

CLK

sneak path example: carry chain

g = ab   p = a + b

c1 = g0 + p0cin

c2 = g1 + p1c1 = g1 + p1g0 + p1p0cin

So what happens when a1=b1=1 and a0=b0=0?  Well, c2=1 and c1=?

p1

CLK
c2

g0
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8:1 Mux

CLK

S0

D0

S1

D1
. . .

S7

D7

Although this looks OK, the dynamic node is heavily loaded with all of the parasitic 
diode capacitance.

The heavily loaded dynamic node is good for noise immunity; lousy for 
performance.

Select signals are nearest the dynamic node for charge-sharing reasons.  Only one 
(few?) select line should ever be high.
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. . .

Compound Domino

CLK

S0

D0

S1

D1

S4

D4

S5

D5
. . .

When the dynamic node is heavily loaded sometimes it’s best to split it.

This circuit is like two 4:1 muxes melded together. 
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BC

ABC

Multiple output domino

Sometimes you can make use of intermediate nodes to form new outputs.

The extra circuitry does slow down the 3-input AND function.

CLK

C

B

A
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Sizing-I

“equivalent inverter”

1.3/0.65 for beta ratio=2, 
fanout=3(wp+wn=2)

4/2

4/2
1.3/0.65*3 ->1.3/1.95 for beta ratio =2, 1.2/2.4 
for beta ratio =1.5

1.2/0.8 for beta ratio=1.5
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Sizing-II
• Start with the output load, and size the inverter(ratio 4:1 or 5:1) 

for a fanout of three.
• Size the NMOS tree for a fanout of three and taper.
• Make the p-keeper big enough to overcome leakage and the 

PMOS precharge device equal to fanout of five or six.
• Increase the size the p-keeper for worst case charge sharing, 

and/or add internal precharge FETs if necessary.
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Sizing-III

C

B

A

CLK

5/1

4/2

4/2

4/2

Wn=2.4

Wn=1.92

Wn=1.54

Wp=0.6 Wp=0.5

CLK

Wp=0.5

5/1

“equivalent inverter”

1.2/0.8
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Circuit Elements

Clk

Data
Out

Data

Clk

Out

Clk

Data
Out

Data

Clk
Out

Data

Clk

Out

C
M
O
S

D
1

Clk

D
1
K

Clk

D
2

Clk

S
D
L

Clk

P
L
A
T
C
H

Clk
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Dynamic Circuits: 
Beyond basic domino

Kevin Nowka, IBM

EE-382M

VLSI–II



The University of Texas at AustinEE 382M Class Notes Page # 56

Agenda 

• Review of  domino 

• Performance Enhancements

• Robustness Enhancements

• Power Enhancements

• Technology and dynamic logic

• Summary
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Review of Domino Gate

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Logic Pulldown
Network
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Review of  Domino Timing

Ot
Fc

CLK

Ft
Oc

Gt
Gc

It
IcLtch Ltch

eval pre eval preCLK

Ft/Fc

Gt/Gc

Ot/Oc

Dom Dom Dom
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Performance – where does the time go?

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Precharge:
- Collision (bad)
- Charging dynamic node
-Charging parasitic caps
-Driving output node low

Evaluate:
-Collision (bad)
-Discharging parasitic caps
-Pulling down dynamic node
- Driving output node high
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Performance Enhancements

• No foot

• Beta skew

• Predischarge

• Reset assist

• Tapering

• MODL (already covered)
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Performance Optimization -- unfooted

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Foot device:
+ prevents precharge-eval collision
-- additional device in pulldown

-- delay (5-15%)
-- clock load (>2X)
-- input cap increased

To eliminate footer 
-- must explicitly manage precharge,

eval intervals ->delayed reset domino
-- at least 1 input in stack must be off

during precharge
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Footed vs. Unfooted Domino

Carry Merge Foot vs. Unfooted Delay

Source: Nowka, Galambos ICCD’98
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Performance Optimization – beta ratio

Ft= AtBt(Cc+Dc) + Et
CLK

At Et

Precharge
Keeper

Output Inv

Output Inverter PFET:
-- pulls up output during evaluate: critical
-- disables keeper

Output Inverter NFET
-- pulls down output during precharge
-- holds output low during standby
-- enables keeper during standby

Skew beta ratio of inverter in favor of PFET
-- faster
-- reduced noise margin
-- slow reset of output

-- can be mitigated with 
additional reset assist device

Wn

Wp
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Performance vs. Beta

Carry merge circuit delay vs. Beta

Source: Nowka, Galambos ICCD’98
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Performance Enhancement – high beta w/ reset 
assist

Ft= AtBt(Cc+Dc) + Et

At Et

Precharge
Keeper

Output Inv

Wn

Wp

Reset assist device

PC_h

PC_l
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Performance Enhancement -- predischarge

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Predischarge Device:
- drives parasitic node to gnd
- forces charge sharing

-- faster (a couple %)
-- keeper, dynamic node, beta

sufficient to overcome this!

CLK_b
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Performance Enhancement – tapering up

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Tapering up (taper factor k)
-more device width low in the stack
-bottom fets need to sink charge from

-Dynamic node
-All internal nodes above them
-Gate leakage current

W ->W

W ->kW

W ->k2W

W ->k3W
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Performance vs. Tapering UP

0.18um bulk CMOS process
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Performance Optimization – topology changes

Topology change:
+ latest arriving signal nearest dynamic node
+ decrease dynamic node cap
+ increase charge sharing!

A_late

B C

B

A_late C

C
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Robustness Enhancements

• Keepers

• Anti-Q-sharing devices

• Beta ratios

• Topology changes

• Layout considerations
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Robustness Optimization -- keeper

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Keeper device:
+ Holds dynamic node high in standby
+ sources current to overcome leakage

- junction leakage
- subthreshold noise

+ sources current to mitigate Q sharing
-slows down evaluate by a couple %

Can dynamic node be floating at a low
voltage?
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Robustness Enhancement – anti-Q-share

Ft= AtBt(Cc+Dc) + Et

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Precharge
Keeper

Foot

Anti-Q-share

Output Inv

Anti-Q sharing:
- Internal nodes capacitance from

-S/D parasitic
-Contacts/Vias/Wires

- Precharge to Vdd with PFET, or
-Vdd-Vtn with NFET, or..
What needs to be precharged:
- multiple fets at a point?
- multi-fingered fets?
- long wire runs?
-Extract, analyze, and simulate!!
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Robustness Optimization – Beta redux

Ft= AtBt(Cc+Dc) + Et
CLK

At Et

Precharge
Keeper

Output Inv

No free lunch –
Big Beta => Lower Noise Margin

Wn

Wp
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DC, AC  Noise margin vs. Beta

Source: Nowka, Galambos ICCD’98
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Robustness Optimization -- topology

Topology changes:
+ to decrease leakage paths
+ to decrease charge sharing
+ to increase dynamic node cap
+ to change noise margin of output stage
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Robustness Optimization -- topology

Topology change:
+ to decrease leakage paths
+ decreases charge sharing
+ increases dynamic node cap

A

B C
W

2W 2W

B

A C
W

2W

C W
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Robustness Optimization -- topology

Topology changes:
+ Decrease charge sharing

- or does it?
+ Minimize leakage paths

- or does it?

S0

D0

S2

D2

S1

D1

S3

D3

S4

D4

S5

D5

S0

D0

S2

D2

S1

D1
S3

D3

S4

D4

S5

D5
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Robustness Optimization -- topology

Topology changes:
+ Decrease charge sharingX

At

Y

Ac

X Y

At Ac
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Robustness Optimization – layout 
considerations

CLK

CLK

Cc

Bt

At

CLK

Et

Dc

Keep these wires short (Gate cap ok, wire BAD)

Min internal node cap – single finger, uncontacted, taper?

Nfet-Pfet spacing may make this a long wire! Use Nfet?

Only short wires here
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Power (Energy!) Enhancements

• Strobing

• Latched output

• No foot

• No tapering

• Gated precharge

• MODL (already covered)
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Power Optimization - Strobing

F = ABCCLK

CLK

C

B

A

F = ABCCLK

A B C
Dual rail => large 

capacitance for two pulldown 
networks, 2output wires

Strobing – use a pulse to 
invert function

Don’t strobe too early!

Generally slower than DR

Do this where timing well 
controlled – memories, PLAs, 
latches

CLK

F = ABCCLK

F = ABCCLK

A B C

Strobe
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Power Optimization – Latched output

Use a strobe to avoid 2 
pulses on a 1-1 transition

Strobe can be CLK or 
chopped CLK

Don’t latch a precharge

CLK

CLK

A B C

Strobe

Ft

F_latched

1-1 transition 
wastes power

F_latched
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Power Optimizations – foot and tapering BACK

CLK

CLK

Cc

Bt

At Et

Dc

W -> X

Output Inv

Eliminating footer decreases 
Cgate _pulldown by 39%

Tapering back (taper factor k=1.5)
-tapering back decreases Cgate_pulldown by 31%

No foot+taper decreases Cgate by 60%

W ->0.33W

W ->0.5W

W ->0.75W

W/3 ->0.17W

Tapering BACK (taper factor k)

-less device width high in the stack

-top fets need to sink less charge
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Performance vs. Tapering BACK

0.13um bulk CMOS process



The University of Texas at AustinEE 382M Class Notes Page # 85

Power Optimization – Gated precharge

Lots of added devices for 
very little savings

Only useful in limited 
situations

May need to buffer output F 
before the NAND

CLK

A B C

CLK

Dyn

Precharge with 
dynamic node hi 
wastes power

F

F

CLK
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Effects of technology on dynamic circuits

• Leakage and noise trends

– Subthreshold

– SOI and bipolar leakage

– Gate leakage

• Low k inter and intra layer dielectrics, dual gate, active-well,     

hi-Vts and lo-Vts,
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Subthreshold leakage

• Subthreshold trends

– Vt decreasing, but not 

according to scaling theory

– Vdd decreasing

– Traditional 5-order 

magnitude Ion:Ioff 

degrading to 3-4 O.M.

– Subthreshold really an issue 

for low-Vts and SOI

At Et

Precharge
Keeper

Isub
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Low-Vt leakage

• Low-Vt transistors have

– ~70 to 180mV lower Vt

– 5-15% faster

– 5x-100X more 

leakage!

– Use sparingly

At Et

Precharge
Keeper

Isub
loVt
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Partially depleted SOI and leakage

• Floating body collects 

charge due to impact 

ionization at drain.

• Voltage on body is potential 

on base terminal of bipolar

• Voltage on body also lowers 

(or raises) Vt of MOSFET

• Increased leakage!!

At

Precharge
Keeper

Isub

BOX

S D
Gate ox
Gate

Floating
body

Body

Parasitic bipolar
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Effects of floating body on 2-and-4-or gate

1. X1..X4 high, Y1..Y4 low

2. Bodies of Tx1 to Tx4 float 

high

• MOS Vt falls

3. X1..X4 low, Y1..Y4 high

• Bipolar current flows

4. Noise on X1..X4

• MOS subthreshold 

leakage

Increase keepers, change 

topologies, predischarge 

intermediate nodes…

Precharge
Keeper

Body

Parasitic bipolar

X1

Isub

Y1

Ic

X4

Y4
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Waveform of this scenerio

1.429e+08 5.022e+08 8.614e+08 1.221e+09 1.580e+091.000e-09

PC

-0.004

2.173

INTOP

-0.108

2.173

INBOT

-0.013

2.168

TOPBODY

0.421

2.022

Id_TOP

-0.203

0.006

DYN

1.345

2.235

OUT

-0.009

0.309

1.580e+09

2.089

0.000

0.006

0.000

0.006

0.000

0.624

0.000

0.001

0.000

2.221

0.000

0.001

0.000

1.580e+09

2.089

0.006

0.006

0.624

0.001

2.221

0.001

dt= 0.000e+00

Runs: soi.grf1 soi.grf1  soi.grf1  soi.grf1  soi.grf1  soi.grf1  soi.grf1  soi.grf1  soi.grf18 soi.grf19 soi.grf1  soi.

Source: CRC Computer Engr. Handbook, Ed. Oklobdzija 2002
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Gate leakage

• Below 2.2 nm gate oxides 

gate oxide tunneling 

becomes a MAJOR issue.

• Unlike subthreshold, bipolar 

leakage, not much we can 

do:

– Keep Tox thicker

– High k oxide materials

– Lower voltage

• This is especially a thorn for 

dynamic circuits

At Et

Precharge
Keeper

Ig
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Other technology trends

• Low k dielectrics in wiring => decrease in coupled noise at 

inputs and dynamic nodes

• Body biases, well biases, dual gate => can be used for increased 

performance or to lower leakage

• Multiple Vts => more options in performance vs. 

power/noise/leakage
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Domino logic: Summary

1. Numerous ways to improve the performance of dynamic

2. Numerous ways to improve the robustness of dynamic

3. Numerous ways to improve the power consumption of dynamic

4. 1-3 not easily mutually satisfied….

5. HIGH PERFORMANCE domino is hand-crafted to avoid noise 
and power problems as well as get performance

6. Dynamic logic which is not high-performance doesn’t have a 
significant advantage over simpler static design.

7. Thus, today domino is largely full-custom, but many are trying 
to automate the design process.

8. Technology trends are a little disturbing – even more 
challenging
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